Finding developmental groups in acquisition data: variability-based neighbor clustering

نویسندگان

  • Stefan Th. Gries
  • Sabine Stoll
  • Michael Tomasello
  • Elena Lieven
  • Patricia M. Clancy
  • Deitz Fitzgerald
چکیده

Acknowledgments The larger portion of this paper was written during the first author's stays at the Department of Psychology and the Department of Linguistics of the Max Planck Institute for Evolutionary Anthropology. We thank Michael Tomasello, Elena Lieven and Bernard Comrie for providing enormously stimulating working environments, Patricia M. Clancy for comments and discussion, and the anonymous reviewers for a multitude of useful suggestions. The usual disclaimers apply.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finding Developmental Groups in Acquisition Data: Variability-based Neighbour Clustering

This article introduces a quantitative, data-driven method to identify clusters of groups of data points in longitudinal data. We illustrate this method with examples from firstlanguage acquisition research. First, we discuss a variety of shortcomings of current practices in the identification and handling of stages in studies of language acquisition. Second, we explain and exemplify our method...

متن کامل

FUZZY K-NEAREST NEIGHBOR METHOD TO CLASSIFY DATA IN A CLOSED AREA

Clustering of objects is an important area of research and application in variety of fields. In this paper we present a good technique for data clustering and application of this Technique for data clustering in a closed area. We compare this method with K-nearest neighbor and K-means.  

متن کامل

Finding Groups in Chronologically-Ordered Corpus Data: Variance-Based Neighbor Clustering

Much corpus-linguistic research is concerned with the development of particular parameters over time. For example, in L1/L2 acquisition/learning, the syntactic development of a child/learner is approximated on the basis of how mean lengths of utterances (MLU), t-unit-based measures, or IPSyn values change over time (cf. Shirai and Andersen 1995 or Ortega 2003). Similarly, in historical linguist...

متن کامل

The identification of stages in diachronic data: variability-based neighbor clustering

This paper introduces a data-driven bottom-up clustering method for the identification of quantitatively different stages in diachronic corpus data. Much like regular hierarchical clustering approaches, it is based on identifying and merging the most cohesive groups of data points, but unlike regular clustering approaches it only allows for merging temporally adjacent data, thus effectively pre...

متن کامل

A Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data

The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007